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Spinodal decomposition in a semidilute suspension of rodlike macromolecules
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The Doi-Shimada-Okano@J. Chem. Phys.88, 4070 ~1988!# theory of the spinodal decomposition in a
suspension of rods is reinvestigated analytically. Short enough rods may rotate fairly unhindered so we em-
phasize translational diffusion. The excluded-volume effect between the rods gives rise to a coupling of the
orientational and translational degrees of freedom. This effect may be addressed correctly because the kernel in
the equation describing the dynamic evolution of the one-particle distribution turns out to be degenerate. The
two principal eigenvalues calculated analytically agree with previous numerical work by Maeda@Macromol-
ecules22, 1881~1989!; 23, 1464~1990!#. It is concluded that the associated relaxation modes do not represent
pure density and orientation fluctuation modes.
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A formally correct dynamical theory of a suspension
hard rods at the level of the second viral approximation w
set up by Doi, Shimada, and Okano~DSO! a decade ago
@1,2#. The major statistical problem is how to tackle the co
pling of the orientational and translational degrees of fr
dom. The initial decay rate of the autocorrelation function
the scattered intensity of light is relatively easy to treat@1# in
this respect. The predicted dependence of this rate on
scattering vector is in reasonable agreement with the ra
measured in scattering experiments on strongly entangled
lutions of the semiflexible polymer poly~g-benzyl a,
L-glutamate! @3#.

The issue of orientational-translational coupling was
dressed for the static~equilibrium! version of the DSO
theory @1#, both numerically@4# and analytically, by varia-
tional methods@5#. The usefulness of variational principles
particularly evident when dealing with attractive interactio
between the rods@6#. Maeda solved the dynamical DS
equations numerically in order to compute the dynamic s
tering curves@4,7#. He pointed out that the two major mode
had a peculiar dependence on the scattering vector, ar
from the orientational-translational coupling inherent in t
interaction kernel in the DSO theory@1#. Here we wish to
introduce a way of tackling the eigenvalue problem by m
ing use of the separability of the kernel in the limit where t
rods are not strongly entangled. Our focus will be on
initial stage of the spinodal decomposition of the isotro
into the nematic liquid-crystalline phase.

Thirty to seventy nearby rods are needed to define a t
confining a test rod if the latter is to be regarded as entan

*Author to whom correspondence should be addressed. Pre
address: P.O. Box 11036, 2301 EALeiden, The Netherlands. F
131-71-5145346, Email address: odijktcf@wanadoo.nl

†Also at: Dutch Polymer Institute, P.O. Box 902, 5600 AX Ein
hoven, The Netherlands.
1063-651X/2000/63~1!/011501~4!/$15.00 63 0115
f
s

-
-
f

he
s,
o-

-

t-

ng

-

e

e
d

@8–11#. This means rodlike macromolecules with a relative
small aspect ratio@L/b5O(10), whereL is the length andb
the diameter# rotate essentially without hindrance right up
and beyond the isotropic-nematic transition@12#. Recent ex-
perimental work on inorganic and anisometric colloids f
cuses on this type of nonentangled suspensions@13–15#.

We consider an initially isotropic suspension of hard ro
of number densityn. We introduce the one-particle distribu
tion f (rW,uW ,t) as a function of the positionrW and orientationuW
of a test rod at timet. For disentangled rods and with negle
of rotational diffusion, we may write a nonlinear diffusio
equation for the distribution@1#

] f

]t
5D

]

]rW F] f

]rW
1 f

]M

]rW G . ~1!

The translational diffusion constantD here is set independen
of the concentration, to a first approximation. The molecu
field M depends on the distributionf and on the Mayer func-
tion W for the excluded-volume interaction between two te
rods @1#

M ~rW,rW8,t !5E drW8duW 8W~rW2rW8,uW ,uW 8! f ~rW8,uW 8,t !. ~2!

The Mayer functionW(rW2rW8,uW ,uW 8) is unity if two rods with
respective configurations (rW,uW ) and (rW8,uW 8) overlap, and
zero otherwise.

We now investigate the relaxation of small fluctuations
the distribution from equilibrium. In equilibrium we havef
5n/4p if f is normalized to the total number of rods in th
suspension. If we writef 5(n/4p)1d f (rW,uW ,t), where the
fluctuation d f is deemed small, and introduce its Fouri
transform

f kW~uW ,t !5
1

V E drWd f ~rW,uW ,t !exp@2 ikW•rW#, ~3!

ent
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we obtain a linear integrodifferential equation describing
time evolution of a fluctuation in the rod distribution:

] f kW

]t
52V̂kW f kW , ~4!

The operatorV̂kW is defined in terms of the Fourier transfor
WkW(uW ,uW 8) of the Mayer function@1#

V̂kW f kW~uW ,t !5Dk2F f kW~uW ,t !1
n

4p E duW 8WkW~uW ,uW 8! f kW~uW 8,t !G ,
~5!

WkW~uW ,uW 8!52bL2 j 0~KW •uW !usingu j 0~KW •uW 8!, ~6!

where j 0(y)[siny/y, KW [ 1
2 kWL, andg5g(uW ,uW 8) is the angle

between two test rods. In Eq.~6! we discern a term
2bL2usingu, signifying the excluded volume between tw
test rods; translation-orientation coupling is expressed in
argument of the spherical Bessel functionsj 0 .

Solving Eq.~4! reduces to finding the spectrum of eige
valuesl of the equation

V̂kWC[Dk2FC1
4c

p E
21

1

dx8K~x,x8!C~x8!G5lC, ~7!

where a dimensionless concentrationc[(p/4)bL2n has
been introduced, and the kernel of the integral operator

K~x,x8!5 (
n50

`

a2n~x!b2n~x8! ~8!

is written in terms of the functionsa2n(x)[d2nb2n(x) and
b2n(x)[ j 0(kx)P2n(x). In Eqs. ~7! and ~8!, x[cosu and
x8[cosu8 denote coordinates of two test rods, where
scattering vectorkW is chosen in thez direction of our spheri-
cal coordinate system. We obtain Eq.~8! because one inte
gration over the azimuthal angle yields a bilinear expans
in terms of Legendre polynomials,P2n ,

1

2p E
0

2p

dwusingu5 (
n50

`

d2nP2n~x8!P2n~x!, ~9!

with expansion coefficientsd05p/4, d2525p/32, . . . @5#.
We next note that the kernel in the integral equation~7! is
separable@16#. Hence we posit a solution of the form

C~x!5 (
m50

`

w2ma2m~x!, ~10!

with coefficientsw2m to be determined. Upon inserting E
~10! into Eq. ~7!, we note that the functionsa2m(x) are lin-
early independent@except possibly at the zeros ofj 0(kx),
their total measure equalling zero#. Thus the eigenvalue
statement is equivalent to

(
n50

`

I 2m,2nw2n5Lw2m , ~11!
01150
e
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n

I 2m,2n[E
21

1

dxa2m~x!b2n~x!, L[
p

4c S l

Dk221D .

The eigenvalues of the resulting matrix equation may
found by solving

det~ IW2LeW !50, ~12!

where eW denotes the unit matrix, andIW a matrix with ele-
mentsI 2m,2n defined in Eq.~11!.

In order to study the onset of spinodal decomposition,
need to know if some eigenvaluel is negative for certaink.
We focus on a two-mode approximation involving the tw
major modes (m50 and 1!, as Maeda already showed nu
merically that the eigenvalues beyondm51 are essentially
purely diffusive@4#. The relevant eigenfunctions are

C65w0
6a0~x!1w2

6a2~x!. ~13!

Equation ~12! then gives for the eigenvaluesL1 and L2

associated with the hybrid eigenfunctionsC1 andC2 ,

L65 1
2 ~ I 001I 22!6 1

2 A~ I 002I 22!
214I 02I 20, ~14!

with

I 0052d0@K21Si~2K !2 j 0
2~K !#, ~15!

I 025d0@2K222 1
2 K22 cos 2K2 3

4 K23 sin 2K

2K21Si~2K !#, ~16!

I 205d2I 02/d0 , ~17!

I 225
d2

16K5 @216K312K~2K229!cos 2K19 sin 2K

26K2 sin 2K18K4Si~2K !#, ~18!

and Si(x) the usual sine integral Si(x)5*0
x(sint/t)dt. It is

easy to show thatL1 is positive andL2 is negative for all
scattering vectors, by using the fact that@P2(x)2P2(y)#2

>0 for all x and y within the interval21<x, y<1. The
functionsL1 andL2 are shown in Figs. 1 and 2. Note th
oscillatory behavior ofL2 at highK, which is perhaps un-
expected for a theory within the second virial approximatio
The original eigenvalues expressing measurable relaxa
rates are given by

l15Dk2S 11
4c

p
L1D , ~19!

l25Dk2S 11
4c

p
L2D . ~20!

These rates are pictured in Figs. 3 and 4, and agree well
the values determined numerically by Maeda@4#. ~See the
entries for modes 0 and 2 in his Table III; there is a slig
disparity because Maeda also accounted for parallel and
pendicular diffusion, as he discussed himself@4#.!
1-2



n

o
s
e
e

e

si-

in
n

of

of

SPINODAL DECOMPOSITION IN A SEMIDILUTE . . . PHYSICAL REVIEW E 63 011501
It is at small scattering angles only that the eigenfunctio
given by Eq.~13! collapse into ‘‘pure’’ density and orienta-
tion modes. Indeed, only forkL→0 do we find thatC1

→P0(x) and C2→P2(x), the former representing a pure
density fluctuation mode and the latter a pure orientati
fluctuation mode.~Here uninteresting numerical prefactor
have been ignored.! At wave vectors greater than zero, th
density and orientational fluctuations intermingle, to giv
rise to the hybrid1 and 2 modes. The hybrid1 mode is
always stable:l1.0 for all k andc. At low scattering angles

FIG. 1. Dimensionless eigenvalueL1 as a function of the di-
mensionless magnitude of the scattering vectorK.

FIG. 2. Dimensionless eigenvalueL2 as a function of the di-
mensionless magnitude of the scattering vectorK.
01150
s

n

kL!1, the ratel1 reduces to that of a simple cooperativ
diffusion process

l15Dk2@112c1O~k2L2!#. ~21!

The 2 mode can become unstable at sufficiently high den
ties. To orderk4, the eigenvaluel2 has a form analogous to
that in Cahn’s theory of the spinodal decomposition
simple liquids@17# @Note that a surface tension is implicit i
Eq. ~2!#:

l25Dk2S 12
C

4
1

11

252
cK21¯ D . ~22!

FIG. 3. Dimensionless relaxation ratel1 as a function of the
dimensionless concentrationc, and the dimensionless magnitude
the scattering vectorK.

FIG. 4. Dimensionless relaxation ratel2 as a function of the
dimensionless concentrationc, and the dimensionless magnitude
the scattering vectorK. This mode becomes unstable forc.4.
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This has a minimum at

Km5
1

2
kmL5F S 1

4
2

1

cD 126

11 G1/2

. ~23!

Accordingly, we infer that fluctuations of the hybrid form
C2 , centered aroundkm and of approximate size 2p/km ,
grow out of an initially isotropic state at concentrationsc
.4, that is, exceeding the spinodal concentration@18#.
,

01150
In conclusion, we have been able to establish the fuk
dependence of the initial stage of the spinodal decomposi
of a suspension of rods. We have used a systematic t
mode approximation, different from that used previously,
our knowledge, and we have assumed that the rods are s
enough to rotate freely. We hope to include dispersion for
into the analysis above, so as to discuss recent experim
on coated boehmite particles@15#. We have to be wary of the
practical import of attractive forces even when they are sm
@6#.
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