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Spinodal decomposition in a semidilute suspension of rodlike macromolecules
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The Doi-Shimada-OkangJ. Chem. Phys88, 4070 (1988] theory of the spinodal decomposition in a
suspension of rods is reinvestigated analytically. Short enough rods may rotate fairly unhindered so we em-
phasize translational diffusion. The excluded-volume effect between the rods gives rise to a coupling of the
orientational and translational degrees of freedom. This effect may be addressed correctly because the kernel in
the equation describing the dynamic evolution of the one-particle distribution turns out to be degenerate. The
two principal eigenvalues calculated analytically agree with previous numerical work by Nisledaomol-
ecules22, 1881(1989; 23, 1464(1990)]. It is concluded that the associated relaxation modes do not represent
pure density and orientation fluctuation modes.
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A formally correct dynamical theory of a suspension of [8—11]. This means rodlike macromolecules with a relatively
hard rods at the level of the second viral approximation wasmall aspect ratipL/b=0O(10), whereL is the length and
set up by Doi, Shimada, and OkafPSO) a decade ago the diametefrotate essentially without hindrance right up to
[1,2]. The major statistical problem is how to tackle the cou-and beyond the isotropic-nematic transitidr2]. Recent ex-
pling of the orientational and translational degrees of freeferimental work on inorganic and anisometric colloids fo-
dom. The initial decay rate of the autocorrelation function ofcuses on this type of nonentangled suspensfit8s-15.
the scattered intensity of light is relatively easy to tigdtin We consider an initially isotropic suspension of hard rods
this respect. The predicted dependence of this rate on tHef number density. We introduce the one-particle distribu-
scattering vector is in reasonable agreement with the rate§on f(r,u,t) as a function of the positionand orientationi

measured in scattering experiments on strongly entangled séf a test rod at time. For disentangled rods and with neglect
lutions of the semiflexible polymer pdly-benzyl «,  Of rotational diffusion, we may write a nonlinear diffusion

L-glutamate [3]. equation for the distributiopl]

The issue of orientational-translational coupling was ad-
dressed for the stati¢equilibrium) version of the DSO ﬂ:Di ﬂ+ ﬂ 1)
theory[1], both numerically{4] and analytically, by varia- at ar | ar or |’

tional method$5]. The usefulness of variational principles is _ - _ _

particularly evident when dealing with attractive interactions The translational diffusion constabthere is set independent

between the rod$6]. Maeda solved the dynamical DSO of the concentration, to a first approximation. The molecular

equations numerically in order to compute the dynamic scatfield M depends on the distributidrand on the Mayer func-

tering curveg4,7]. He pointed out that the two major modes tion W for the excluded-volume interaction between two test

had a peculiar dependence on the scattering vector, arisif@ds([1]

from the orientational-translational coupling inherent in the

interaction kernel in the DSO theofl]. Here we wish to - _f R R T I 1

: . . M(F,F"t)y= | dF'dd’'W(r—r",d,a")f(r",d’,t). (2

introduce a way of tackling the eigenvalue problem by mak- ( ) ( ) ) @

ing use of the separability of the kernel in the limit where the ) I o )

rods are not strongly entangled. Our focus will be on theThe Mayer functionV(r—r",d,u’) is Ue'j'tz/,'f two rods with

initial stage of the spinodal decomposition of the isotropicrespective configurationsri) and (”,d’) overlap, and

into the nematic liquid-crystalline phase. zero otherwise. . o
Thirty to seventy nearby rods are needed to define a tube We now investigate the relaxation of small fluctuations in

confining a test rod if the latter is to be regarded as entanglethe distribution from equilibrium. In equilibrium we hawve

=wvl4 if fis normalized to the total number of rods in the

suspension. If we writef = (v/47)+ 5f(r,d,t), where the
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we obtain a linear integrodifferential equation describing the 1 m [ N

time evolution of a fluctuation in the rod distribution: Iom,on= ﬁldxaz,n(x)bm(x), A= Zc oz L
ofy . . . : .
a—tkz—leflz, (4)  The eigenvalues of the resulting matrix equation may be

found by solving

The operatoﬂg is defined in terms of the Fourier transform det F—Aé):O (12)
W(G,d") of the Mayer functior1]

wheree denotes the unit matrix, and a matrix with ele-
fo(d, t)+_f dd' Wi(a,d" ) fe(d’ ) |, mentsl ,, o, defined in Eq(11).
In order to study the onset of spinodal decomposition, we
(®)  need to know if some eigenvalueis negative for certaitk.
. ., We focus on a two-mode approximation involving the two
Wi(,0") =2bL2jo(K- 0)|siny|jo(K- "), ®  major modes =0 and 1, as Maeda already showed nu-
merically that the eigenvalues beyont=1 are essentially

wherejo(y) =sinyly, K=3kL, andy=(0,d’) is the angle  pyrely diffusive[4]. The relevant eigenfunctions are
between two test rods. In Eq6) we discern a term

Ocfi(a,t)=DK2| f

2bL2[siny], signifying the excluded volume between two V. =g¢ga(X)+ ¢, asX). (13
test rods; translation-orientation coupling is expressed in the
argument of the spherical Bessel functiggs Equation(12) then gives for the eigenvalues, and A _

Solving Eq.(4) reduces to finding the spectrum of eigen- associated with the hybrid eigenfunctiols, and¥ _,

values\ of the equation . ) ,
Ae=3(loot 1) =3 (log— 120"+ 4l gl o0, (14)

N 4c (1
Q¥ =Dk? \If+?f dX' K(x,x")W(x")| =AY, (7)  with
-1

— —1c; _ -2
where a dimensionless concentratios= (7/4)bL?y has l00=2do[K™SI(2K) =5(K)1, (15)
been introduced, and the kernel of the integral operator loy=do[2K 2— LK 2 cos K — 2K ~3sin 2K

—K~1Si(2K)], (16)

©

K(x,x") E aon(X)bon(X") ®)

I 20=d2l g2/ do, (17)
is written in terms of the functiona,,(x)=d,,b,,(X) and
bon(X)=]o(kX)P,n(X). In Egs. (7) and (8), x=cosf and
x"=cos#’ denote coordinates of two test rods, where the
scattering vectok is chosen in the direction of our spheri-
cal coordinate system. We obtain E§) because one inte-
gration over the azimuthal angle yields a bilinear expansio
in terms of Legendre polynomial®,,,,,

d
| 2= g5l ~ 16K +2K(2K?~9)cos K +9 sin K

—6K?sin 2K +8K*Si(2K)], (18

Mnd Sik) the usual sine integral Sif= [j(sint/t)dt. It is
easy to show thad . is positive andA _ is negative for all

1 2= % scattering vectors, by using the fact th&,(x) — P,(y)]?
_f de|siny|= 2 Ao Pon(X' )P on(X), (9) =0 for all x andy within the interval —1<x, y<1. The

2m Jo n=0 functionsA . and A _ are shown in Figs. 1 and 2. Note the
oscillatory behavior ofA _ at highK, which is perhaps un-
expected for a theory within the second virial approximation.
The original eigenvalues expressing measurable relaxation
rates are given by

with expansion coefficientdy= 7/4, d,=—5=/32, ... [5].
We next note that the kernel in the integral equati@nis
separablg16]. Hence we posit a solution of the form

[

V(x)= mgo ®2mBzm(X), (10) X, =DK?

4c
1+—A+>, (19
o

with coefficientse,,, to be determined. Upon inserting Eq.
(10) into Eq. (7), we note that the functions,(x) are lin- A_=DKk?
early independenfexcept possibly at the zeros ¢f(kx),

their total measure equalling zdroThus the eigenvalue

4c )
1+—A_|. (20)
a

These rates are pictured in Figs. 3 and 4, and agree well with

statement is equivalent to the values determined numerically by Maddd. (See the
w entries for modes 0 and 2 in his Table llI; there is a slight
> o on®on=A G (11) disparity because Maeda also accounted for parallel and per-

pendicular diffusion, as he discussed him$élf)
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FIG. 1. Dimensionless eigenvalue, as a function of the di-
mensionless magnitude of the scattering vegtor kL<1, the rate\ , reduces to that of a simple cooperative
diffusion process

It is at small scattering angles only that the eigenfunctions
given by Eq.(13) collapse into “pure” density and orienta- N =Dk 1+2c+0(k?L?)]. (21)
tion modes. Indeed, only fokL—0 do we find that¥ ,
—Po(x) and ¥ _—P,(x), the former representing a pure The — mode can become unstable at sufficiently high densi-
density fluctuation mode and the latter a pure orientationjes. To ordek®, the eigenvalua _ has a form analogous to
fluctuation mode.(Here uninteresting numerical prefactors that in Cahn’s theory of the spinodal decomposition in
have been ignorelAt wave vectors greater than zero, the simple liquids[17] [Note that a surface tension is implicit in
density and orientational fluctuations intermingle, to givegq. (2)]:
rise to the hybrid+ and — modes. The hybrid+ mode is
always stable\ ., >0 for all k andc. At low scattering angles

cC 1
)\=Dk2(1+ SE5CKZ -

4 252 ' 22
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FIG. 4. Dimensionless relaxation rate as a function of the
FIG. 2. Dimensionless eigenvalue_ as a function of the di- dimensionless concentratianand the dimensionless magnitude of
mensionless magnitude of the scattering ve&tor the scattering vectd{. This mode becomes unstable for 4.
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This has a minimum at

1 1 1)\ 126|172
Km=§kmL= —=

11

4 c (23

Accordingly, we infer that fluctuations of the hybrid form
V¥ _, centered around,, and of approximate size®k,,,
grow out of an initially isotropic state at concentrations
>4, that is, exceeding the spinodal concentrafib].
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In conclusion, we have been able to establish the Kull
dependence of the initial stage of the spinodal decomposition
of a suspension of rods. We have used a systematic two-
mode approximation, different from that used previously, to
our knowledge, and we have assumed that the rods are short
enough to rotate freely. We hope to include dispersion forces
into the analysis above, so as to discuss recent experiments
on coated boehmite particlgg5]. We have to be wary of the
practical import of attractive forces even when they are small
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